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CHAPTER 4 
Exploring, Discovering, 
and Reasoning With 
and About Mathematics

Introduction

The upcoming chapters six, seven, and eight discuss how the big ideas approach 
to mathematics teaching unfolds throughout elementary, middle, and high school. 
As important background for that discussion, this chapter goes more deeply into 
California’s Standards for Mathematical Practice (SMPs), which embed the habits 
of mind and habits of interaction that form the basis of math learning—for example, 
persevering in problem-solving, explaining one’s thinking, and constructing 
arguments. Using three interrelated SMPs for illustration, the chapter demonstrates 
how key mathematical practices, integrated with each other, can help teachers across 
grade levels create powerful math experiences centered on exploring, discovery, and 
reasoning—thus enabling students to develop and deepen those skills, in relation to 
progressions in math content, as they move through the grades.
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The Importance of the Mathematical 
Practices

The goal of the California Common Core State Standards for Mathematics (CA 
CCSSM) is to prepare students to be powerful users of mathematics, equipped 
to understand and affect their worlds in whatever life path they choose. Proficient 
students expect mathematics to make sense. They take an active stance in solving 
mathematical problems. When faced with a nonroutine problem, they have 
the courage to plunge in and try something, and they have the procedural and 
conceptual tools to follow through. They are experimenters and inventors who can 
think strategically and adapt known strategies to new problems (Swan and Burkhardt 
2014).

As noted in previous chapters, the CA CCSSM include two types of standards. 
Content standards describe for each grade the mathematical expertise, skills, and 
knowledge that students should develop. Practice standards—the SMPs—describe the 
ways of interacting with mathematics, individually and collaboratively, that form the 
basis of math learning.

While content standards are different for each grade level, the SMPs are the same 
for all grades and span the entirety of kindergarten through grade twelve (K–12). 
They develop in relation to progressions in mathematics content. At the elementary 
level, students work with numbers they are familiar with and begin to explore the 
structure of place value, patterns in the base-10 number system (such as even 
and odd numbers), and mathematical relationships (such as different ways to 
decompose numbers or relationships between addition and multiplication). Through 
these explorations, young students conjecture, explain, express agreement and 
disagreement, and come to make sense of data, numbers, and shapes.

Standards for Mathematical Practice
SMP.1: Make sense of problems and persevere in solving them

SMP.2: Reason abstractly and quantitatively

SMP.3: Construct viable arguments and critique the reasoning of others

SMP.4: Model with mathematics

SMP.5: Use appropriate tools strategically

SMP.6: Attend to precision

SMP.7: Look for and make use of structure

SMP.8: Look for and express regularity in repeated reasoning
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Students in middle school build on these early experiences to deepen their 
interactions with mathematics and with others as they do mathematics together. 
During the elementary grades, students typically draw on contexts and on concrete 
manipulatives and representations to engage in mathematical reasoning and 
argumentation. At the middle school level, students continue to reason with such 
concrete referents and also begin to draw on symbolic representations (such as 
expressions and equations), graphs, and other representations that have become 
familiar enough that students experience them as concrete. Middle school 
students deepen their opportunities for sense-making as they move into ratios and 
proportional relationships, expressions and equations, geometric reasoning, and 
data.

In high school, students continue to build on earlier experiences as they make sense 
of functions and ways of representing functions, relationships between geometric 
objects and their parts, and data arising in contexts of interest. As students grow, 
through years of making sense of and communicating about mathematics with one 
another and the teacher, the same practices that cut across grades K–12 emerge at 
developmentally and mathematically appropriate levels.

The sections that follow begin with an overview of the habits of mind and habits 
of interaction that are embedded in the practices and form the basis for math 
learning. We then describe the instructional design approach that enables students 
to experience learning the big ideas of mathematics by conducting authentic 
investigations—that is, investigations of real-world situations or questions about 
which students actually wonder. Finally, the balance of the chapter focuses on three 
interrelated SMPs to illustrate how the mathematics practices are integrated with 
each other, how they develop across the grade bands—elementary, middle, and high 
school—in relation to progressions in math content, and how, together, the SMPs 
form an anchor for classroom experiences that center exploring, discovering, and 
reasoning with and about mathematics.



Chapter 4: Exploring, Discovering, and Reasoning With and 
About Mathematics

4 

Habits of Mind and Habits of Interaction

The SMPs are designed to instill the habits of mind and habits of interaction that 
the field increasingly recognizes are essential for the kind of deep learning of 
mathematics that students require for their lives and careers and to better interpret 
and understand their world. Over the past several decades, there has been a national 
push in mathematics education to focus on these habits. Habits of mind include 
making or using mathematical representations, attending to mathematical structure, 
persevering in solving problems, and reasoning, with the latter including the 
processes of inferencing, conjecturing, generalizing, exemplifying, proving, arguing, 
and convincing (Jeannotte and Kieran 2017). Habits of interaction are linguistic 
processes and include such things as explaining one’s thinking, justifying a solution, 
listening to and making sense of the thinking of others, and raising worthy questions 
for discussion.

Both kinds of habits are fundamentally tied to language development and linguistic 
processes. To support reasoning processes and habits of interactions, teachers 
need to support language development as students engage in these disciplinary 
practices. By the time California’s students graduate from high school, they should 
be comfortable engaging in many mathematical practices, including those that are 
central to the SMPs highlighted in this chapter: exploration, discovery, description, 
explanation, generalization, and justification (including proof, examples, and non-
examples).

This framework situates mathematics learning in the context of investigations that 
allow students to experience mathematics as a set of lenses for understanding, 
explaining, predicting, and affecting authentic contexts (as defined in chapter one). 
In the early grades, meaningful contexts might come from everyday activities that 
children engage in at home, at school, and within their community. These might 
include imagined play or familiar celebrations with friends or family, and familiar 
places such as a park, playground, zoo, or school itself. Meaningful contexts are 
also those that center on notions of fairness and justice, such as issues related to 
the environment, social policies, or particular problems faced in the community. As 
teachers get to know their students and their students’ communities, the contexts that 
matter to young children come to the fore.

In the middle grades, the contexts relevant to students continue to include—but 
increasingly go beyond—local, everyday activities and interactions. Middle school 
students might begin to explore publicly available datasets on current events of 
interest, use familiar digital tools to explore the mathematics around them, and 
explore mathematical topics within everyday contexts like purchasing snacks with 
friends, playing or watching sports, or saving money. By the time they reach high 
school, students have a wide array of contexts available to explore, increasingly 
understanding society and the world around them through explorations in data, 
numbers, and space.
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For all of us, the capacity to use mathematics to understand the world influences 
every aspect of our lives, from advocating just policies in our communities to outlining 
personal finances to completing tasks like cooking and gardening. For example, an 
understanding of fractions, ratios, and percentages is crucial to questions of fairness 
and justice in areas as diverse as incarceration, environmental and racial justice, and 
housing and education policy.

Being able to reason with and about the mathematics embedded in real-world 
situations (including using ideas such as recursion, shape of curves, and rate of 
change) empowers people to make important and consequential decisions not only 
for their own lives but also for the lives of others in their communities. Making sense 
of the mathematics underlying data-based claims about the benefits or dangers of 
particular foods, for example, empowers everyday decision-making. (Chapter five 
addresses the importance of this practice of reasoning about the world using data.)

The ability to reason is also a foundational skill for understanding the impact of 
stereotypes. Humans are quick to generalize from a small number of examples and 
to construct causal stories to explain observed phenomena. In many situations, this 
tendency serves us well: people learn from very few examples that a stove might 
be painfully hot, and a Copernican model of a sun-centered universe enabled 
astronomers to predict the movement in the sky of planets and stars with reasonable 
accuracy.

There are, however, many situations in which humans are poorly served by such 
generalizations, especially those that lead to inequities or the unjust treatment of 
people based on characteristics that call forth internalized stories about expected 
capacities, motivation, behavior, or background. Such stories are often emotional, 
based on little evidence, and socially buttressed. Action based on these stories does 
great harm to school communities and individual students.

This tendency to assume, without adequate justification, that generalizations are valid 
is reinforced by many poorly constructed math assessment questions—for example, 
“What is the next term in this sequence: 1, 2, 4, 8, …?” instead of the more informative 
and reasoning-reinforcing question, “What rule or pattern might generate a sequence 
that begins 1, 2, 4, 8, ...? According to your rule, what is the next term?” Mathematics 
education must prepare students to use mathematics to comprehend and respond 
to their world by deepening their understanding of mathematics and the issues that 
affect their lives. The goal is that students learn to “use mathematics to examine … 
various phenomena both in one’s immediate life and in the broader social world and 
to identify relationships and make connections between them” (Gutstein 2003, 45).
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Instructional Design: Drivers of Investigation, 
Mathematical Practices, and Content Connections
As described in chapters one and two, instructional activities should be experienced 
as intriguing investigations designed to elicit questions about authentic, real-world 
contexts. Designed around the mathematical big ideas, these investigations are 
framed by a conception of the why, how, and what of math—a conception that makes 
connections across different aspects of content and also connects content with 
mathematical practices.

Three Drivers of Investigation (DIs)—sense-making, predicting, and having an impact—
provide the “why” of an activity. They elicit curiosity and provide motivation. The 
eight SMPs provide the “how.” Four types of Content Connections (CCs)—which 
ensure coherence throughout the grades—provide the “what.” Figure 4.1 maps out 
the interplay at work when this conception is used to structure and guide student 
investigations.
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Figure 4.1: The Why, How, and What of Mathematics

Long description of figure 4.1

These three dimensions— the DIs, the SMPs, and the CCs—guide instructional design. 
For example, students can make sense of the world (DI1) by exploring changing 
quantities (CC2) through classroom discussions wherein students have opportunities 
to construct viable arguments and critique the reasoning of others (SMP.3).

https://www.cde.ca.gov/ci/ma/cf/ch4longdescriptions.asp
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Exploring and Reasoning With and About 
Mathematics: How Three SMPs Interrelate and 
Progress Through the Grades
The SMPs are designed to instill habits and behaviors that reflect a deep conceptual 
and procedural understanding. Thus, over the course of K–12 learning, the SMPs 
equip students for success in college-level mathematics and in jobs that require an 
application of mathematical skills to novel situations. Unlike the content standards, the 
SMPs are the same for all grades, K–12 (with one addition in high school; see SMP.3.1, 
below). As students progress through mathematical content, their opportunities to 
deepen their knowledge of and skills in the SMPs should increase.

Deeper Practice or More Content Topics?

Mastering high school-level mathematics content to acquire the knowledge 
needed to understand the world can empower students who will continue on to 
tertiary institutions where they will be expected to engage in career- and college-
level mathematics. Despite this, there is a well-documented, persistent disconnect 
between the beliefs of high school mathematics teachers versus those of college 
instructors about the high school math content that is most important for students’ 
success in college.

The ACT National Curriculum Survey (widely administered every three to five years) 
reported that in 2006, high school mathematics teachers gave more advanced 
topics greater importance than their postsecondary counterparts did. By contrast, 
postsecondary mathematics instructors rated “a rigorous understanding of 
fundamental underlying mathematics skills and processes” as more important than 
exposure to more advanced mathematics topics (ACT, Inc. 2007, 5; see also ACT, Inc. 
2020).

High school teachers’ misunderstanding of the types of experiences that best 
prepare students for college mathematics success too often produces high school 
graduates who enter college with a superficial grasp of superfluous procedures and 
little conceptual framework. To rectify this problem, the goal of K–12 mathematics 
should be to impart a deep but flexible procedural knowledge that helps 
students understand important concepts and a deep conceptual knowledge that 
helps students make sense of and connect procedures and ideas. The learning 
of procedural knowledge, in other words, “should be structured in a way that 
emphasizes the concepts underpinning the procedures in order for conceptual 
knowledge to improve concurrently” (Maciejewski and Star 2016). For example, a 
“standard” algorithm for adding multidigit whole numbers should be encountered 
by students as a way to encode place-value-based and decomposing/recomposing-
based ways of thinking about addition, supported by physical or visual models.
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Every SMP is crucial, and most worthwhile classroom mathematics activities require 
engagement in each to varying degrees throughout the year. This chapter illustrates 
the possibilities by focusing on how the following three SMPs might interrelate:

• SMP.3: Construct Viable Arguments and Critique the Reasoning of Others 
(includes the California-specific high school SMP.3.1 regarding proof)

• SMP.7: Look for and Make Use of Structure

• SMP.8: Look for and Express Regularity in Repeated Reasoning

(The choice to highlight SMPs 3, 7, and 8 does not reflect any position about their 
value relative to other SMPs nor does it suggest that these SMPs must go together 
or that other combinations of SMPs are less feasible. All SMPs are important and can 
interrelate through classroom activities.)

These practices do not develop without careful attention across all grade levels and in 
relation to mathematical content. The following sequence of four processes is a useful 
guide for designing mathematical investigations that integrate multiple content and 
practice standards at the lesson or unit level (see chapters six, seven, and eight for 
more grade-level guidance on mathematical investigations):

1. Exploring authentic mathematical contexts

2. Discovering regularity in repeated reasoning and structure

3. Abstracting and generalizing from observed regularity and structure

4. Reasoning and communicating with and about mathematics in order to 
develop mathematical meaning and to share and justify conclusions

A classroom where students are engaged in these processes might look different to a 
visitor (or to the teacher!) than math classes portrayed in popular media. While these 
processes focus on communication as sharing and justifying mathematical ideas, 
mathematical investigations involve multiple communicative processes for connecting 
and interacting with others and mathematics. Evidence of SMPs 3, 7, and 8 (among 
others) might include the following:

• Students trying multiple examples and comparing (SMP.1 and SMP.7).

 ◦ Example: “I tried 6; what did you do?”

• Students challenging each other (SMP.3).

 ◦ Example: “I see why you think that from what you tried. I don’t think that 
always works because ….”

• Predictions being shared (often these reflect early noticing of repeated 
reasoning and structure, SMP.7 and SMP.8).

 ◦ Example: “I think that when we try with a hexagon, we’ll get ….”
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• Students justifying their predictions (SMPs 3, 7, and 8).

 ◦ Example: “No matter what number we use, it will always be true that ….”

In short, a classroom with evidence of SMPs 3, 7, and 8 will include students using 
their own understanding to reason about authentic mathematical contexts and to 
share that reasoning with others.

Supporting Linguistically Diverse Students to Explore and Reason
As is clear from the descriptions above, engagement in SMPs 3, 7, and 8 involves 
significant language demands for the purposes of understanding others’ ideas and 
communicating one’s own. The California English Language Development Standards 
(CA ELD Standards) describe linguistic processes and resources that are developed as 
students build their English language proficiency (California Department of Education 
2014). The CA ELD Standards, used in parallel with the SMPs and content standards, 
describe expectations for students’ ability to use language to engage in the practice 
of mathematics.

For each grade, the CA ELD Standards are organized in three parts: “Interacting in 
Meaningful Ways,” “Learning About How English Works,” and “Using Foundational 
Literacy Skills.” Parts I and II, shown below, have a common numbering structure 
across the grades. This chapter highlights connections to these standards using 
this numbering—for example (CA ELD I.A.3: Collaborative—Offering opinions and 
negotiating with or persuading others).

Part I: Interacting in Meaningful Ways

A. Collaborative (engagement in dialogue with others)

1. Exchanging information and ideas via oral communication and 
conversations

2. Interacting via written English (print and multimedia)

3. Offering opinions and negotiating with or persuading others

4. Adapting language choices to various contexts

B. Interpretive (comprehension and analysis of written and spoken texts)

5. Listening actively and asking or answering questions about what was 
heard

6. Reading closely and explaining interpretations and ideas from reading

7. Evaluating how well writers and speakers use language to present or 
support ideas

8. Analyzing how writers use vocabulary and other language resources

C. Productive (creation of oral presentations and written texts)

9. Expressing information and ideas in oral presentations
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10. Writing literary and informational texts

11. Supporting opinions or justifying arguments and evaluating others’ 
opinions or arguments

12. Selecting and applying varied and precise vocabulary and other 
language resources 

 Part II: Learning About How English Works

A. Structuring Cohesive Texts

1. Understanding text structure and organization based on purpose, text 
type, and discipline

2. Understanding cohesion and how language resources across a text 
contribute to the way a text unfolds and flows

B. Expanding and Enriching Ideas

3. Using verbs and verb phrases to create precision and clarity in different 
text types

4. Using nouns and noun phrases to expand ideas and provide more detail

5. Modifying to add details to provide more information and create precision

C. Connecting and Condensing Ideas

6. Connecting ideas within sentences by combining clauses

7. Condensing ideas within sentences using a variety of language resources

Note the high degree of alignment between the evidence of engagement in SMPs 3, 
7, and 8 and these CA ELD Standards: I.A.1: Collaborative—Exchanging information 
and ideas via oral communication and conversations; 1.A.3: Collaborative—Offering 
opinions and negotiating with or persuading others; I.B.5: Interpretive—Listening 
actively and asking or answering questions about what was heard; I.B.7: Interpretive—
Evaluating how well writers and speakers use language to present or support ideas; 
I.C.11: Productive—Supporting opinions or justifying arguments and evaluating others’ 
opinions or arguments.

Just as the CA CCSSM are not a design for instruction but rather a definition of goals, 
so too the CA ELD Standards do not prescribe instruction that will help students 
achieve the CA ELD Standards. For tools to design instruction, referenced here 
and throughout the chapter are tools from Principles for the Design of Mathematics 
Curricula: Promoting Language and Content Development (Zwiers et al. 2017). This 
framework, referred to as the Understanding Language (UL) Framework, sets out 
four design principles and eight Mathematical Language Routines (referenced, for 
example, as UL DP2 or UL MLR5).
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Understanding Language: Design Principles

DP1. Support sense-making: Scaffold tasks and amplify language so students 
can make their own meaning.

DP2. Optimize output: Strengthen the opportunities and supports for helping 
students to describe clearly their mathematical thinking to others, orally, 
visually, and in writing.

DP3. Cultivate conversation: Strengthen the opportunities and supports for 
constructive mathematical conversations (pairs, groups, and whole class).

DP4. Maximize linguistic and cognitive meta-awareness: Strengthen the 
“meta-” connections and distinctions between mathematical ideas, reasoning, 
and language.

Understanding Language: Mathematical Language Routines

See the Understanding Language document (Zwiers et al. 2017) to learn about these 
routines and see examples:

MLR1. Stronger and Clearer Each Time

MLR2. Collect and Display

MLR3. Critique, Correct, and Clarify

MLR4. Information Gap

MLR5. Co-Craft Questions and Problems

MLR6. Three Reads

MLR7. Compare and Connect

MLR8. Discussion Supports

For many students, working in small groups to conduct the investigations, critiques, 
and reasoning in their preferred or home language can support and strengthen 
understanding. Designated ELD time helps prepare English learners in the language 
of critiquing, reasoning, generalizing, and arguing to support their engagement in 
the SMPs and the mathematical content. The approach in this framework integrates 
SMPs 3, 7, and 8 in the context of mathematical investigations to highlight ways that 
mathematical practices can come together through exploration and reasoning. 
This approach also supports attainment of the CA ELD Standards, when instruction 
incorporates the UL Design Principles and Mathematical Language Routines.
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Standards for Mathematical Practice 3, 7, and 8
It is important to revisit these SMPs as they appear in the CA CCSSM:

• SMP.3: Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, 
definitions, and previously established results in constructing arguments. 
They make conjectures and build a logical progression of statements to 
explore the truth of their conjectures. They are able to analyze situations 
by breaking them into cases, and can recognize and use counterexamples. 
They justify their conclusions, communicate them to others, and respond 
to the arguments of others. They reason inductively about data, making 
plausible arguments that take into account the context from which the data 
arose.

Mathematically proficient students are also able to compare the 
effectiveness of two plausible arguments, distinguish correct logic or 
reasoning from that which is flawed, and—if there is a flaw in an argument—
explain what it is. Elementary students can construct arguments using 
concrete referents such as objects, drawings, diagrams, and actions. 
Such arguments can make sense and be correct, even though they are 
not generalized or made formal until later grades. Later, students learn to 
determine domains to which an argument applies. Students at all grades 
can listen to or read the arguments of others, decide whether they make 
sense, and ask useful questions to clarify or improve the arguments. CA 
3.1 (for higher mathematics only): Students build proofs by induction and 
proofs by contradiction.

Notably, neither “argument” nor “critique” has negative connotations in this context—
neither word implies disagreement. In the sense used here, “argument” is “a reason 
or set of reasons given in support of an idea, action or theory,” and “critique” means 
“evaluate (a theory or practice) in a detailed and analytical way” (Oxford 2019). Thus, 
“critiquing” includes making sense of the reasoning of others, as well as noticing 
important ideas and connections, wondering about unjustified claims, and offering 
alternative ideas. Everyday notions of the terms “argument” and “critique” can 
inadvertently invite students to interpret mathematics classroom discussions as 
competitions for status; expressing disagreement can feel like an insult rather than an 
invitation for reasoning (Langer-Osuna and Avalos 2015).

Building a classroom culture in which students can become proficient at constructing 
and critiquing arguments requires rich contexts and problems in which multiple 
approaches and conclusions can arise, creating a need for generalization and 
justification. Teaching for the development of SMPs, especially SMP.3, includes 
developing classroom norms for discussions that focus on examining the “truthiness” 
(i.e., validity) of the mathematical ideas themselves, rather than evaluating the student 
offering ideas in what Boaler referred to as the “dance of agency” (2002, drawing 
on Pickering 1995). According to the National Council of Teachers of Mathematics, 
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“Effective teaching of mathematics facilitates discourse among students to build 
shared understanding of mathematical ideas by analyzing and comparing student 
approaches and arguments” (2014, 12).

Suggested Math Class Norms:

1. Everyone can learn math to the highest levels.

2. Mistakes are valuable for learning.

3. Questions are important.

4. Math is about creativity and making sense.

5. Math is about connections and communicating.

6. Depth is more important than speed.

7. Math class is about learning with understanding.

8. Everyone has the right to share their thinking.

9. We learn more when we attend to and make sense of the thinking of others.

10. All cultures reflect histories of important mathematical thinking and
applications.

It is possible to prompt this culture by valuing the role of skepticism—using purposeful 
and probing questions, removing or delaying teacher validation of reasoning in favor 
of class-negotiated acceptance, and explicitly and frequently reminding students that 
mathematicians prove claims by reasoning (Boaler 2019). Classroom norms must set 
the expectation that students respectfully attend to and make sense of the thinking 
of others so they can learn from their classmates’ perspectives and deepen their own 
thinking. Students must experience a classroom environment in which teachers and 
all students have the right to share their thinking and are supported in doing so. Such 
norms are especially important with respect to differences in mathematical ideas, 
cultural experiences, and linguistic expressions. These norms are valuable beyond 
learning math; they help students learn to be contributing members of teams.

• SMP.7: Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or 
structure. Young students, for example, might notice that three and seven 
more is the same amount as seven and three more, or they may sort a 
collection of shapes according to how many sides the shapes have. Later, 
students will see 7 × 8 equals the well-remembered 7 × 5 + 7 × 3, in 
preparation for learning about the distributive property. In the expression 
x2 + 9x + 14, older students can see the 14 as 2 × 7 and the 9 as 2 + 7. They 
recognize the significance of an existing line in a geometric figure and can 
use the strategy of drawing an auxiliary line for solving problems. They 
also can step back for an overview and shift perspective. They can see 
complicated things, such as some algebraic expressions, as single objects 
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or as being composed of several objects. For example, they can see 
5 – 3(x – y)2 as 5 minus a positive number times a square and use that to 
realize that its value cannot be more than 5 for any real numbers x and y.

• SMP.8: Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, 
and look both for general methods and for shortcuts. Upper elementary 
students might notice when dividing 25 by 11 that they are repeating the 
same calculations over and over again, and conclude they have a repeating 
decimal. By paying attention to the calculation of slope as they repeatedly 
check whether points are on the line through (1, 2) with slope 3, middle 
school students might abstract the equation (y – 2)/(x – 1) = 3. Noticing the 
regularity in the way terms cancel when expanding (x – 1)(x + 1), 
(x – 1)(x2 + x + 1), and (x – 1)(x3 + x2 + x + 1) might lead them to the general 
formula for the sum of a geometric series. As they work to solve a problem, 
mathematically proficient students maintain oversight of the process, while 
attending to the details. They continually evaluate the reasonableness of 
their intermediate results.

Patterns in SMP.7 might be numeric, geometric, algebraic, or a combination. Structure 
is “the arrangement of and relations between the parts or elements of something 
complex” (Oxford University Press 2019). SMP.7 and SMP.8 are key to abstracting—
stepping back from concrete objects to consider, all at the same time, a class of 
objects in terms of some set of identical properties and generalizing, extending a 
known result to a larger class. Reasoning abstractly and developing, testing, and 
refining generalizations are essential components of doing mathematics, including 
solving problems (National Governors Association Center for Best Practices and 
Council of Chief State School Officers 2010).

Abstracting, Generalizing, Argumentation
Bringing all three SMPs together—abstracting, generalizing, and argumentation—
empowers teachers to use classroom discussions and other collaborative activities 
where students make sense of mathematics together. Teacher facilitation of high-
quality mathematics discourse with attention to language development is the key to 
unlocking these practices for students and bringing them holistically into practice. 
Historically, proficiency in mathematics has been defined as an individual, cognitive 
construct. However, the past three decades of mathematics classroom research has 
revealed the ways in which learning and doing mathematics are rooted in social 
activity (Lerman 2000; National Academies of Sciences, Engineering, and Medicine 
2018).

Still, merely asking students to talk to each other in math class is insufficient. The 
facilitation of high-quality discourse needs to be intentional, especially about 
language development. Assignments for student interactions that lack intention 
could hinder or prevent high-quality math discourse. For example, primary language 
grouping can support effective interactions, and communication is important. 
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Another option is to consider assigning a student to serve as a bilingual broker for 
each small group of English learners and English-only students. This student is given 
extra practice in providing the language support needed so that each group member 
understands and appreciates everyone’s thinking.

In the following progressions through the grade bands, the framework illustrates 
ways that students might progress in the SMPs through such classroom discourse 
activity, based on thoughtful whole- and small-group activities where students 
access opportunities to grapple with and discuss mathematical ideas and problems 
through engagement in the SMPs—especially SMPs 3, 7, and 8. Intentional patterns of 
grouping, such as primary language grouping to support effective interactions and 
communication, can be effective at supporting multilingual students’ engagement 
and access.

Such strategies must be used carefully, however, since some strategies for setting up 
groups can have serious pitfalls. The example here is specific to developing language 
for math discourse. But grouping by perceived “ability” can be the first step in a 
system of tracking if “similar ability” students are grouped together (see chapter nine) 
or can unintentionally communicate beliefs about who is capable—as when groups 
are intentionally stratified according to perceived “ability” so that students soon 
understand who is the “high kid” and who is the “low kid” in the group. Aside from 
language development considerations and any safety concerns, randomizing group 
assignments can convey to each student that everyone has something to offer the 
group’s learning and something to learn from the thoughts of others.

Progressions in the Mathematical Practices
Young learners begin to engage with mathematical ideas through real-world contexts. 
As students access domains of mathematics, they increase their ability to explore 
purely mathematical contexts. For instance, even young learners who have become 
comfortable with the natural numbers—as a context in which reasoning can occur—can 
explore patterns in even and odd numbers and use shared definitions to reason about 
them. Yet even as students increasingly explore mathematical worlds, opportunities 
to mathematize the real world continue to be important from the early grades into 
adulthood (as illustrated in chapters three and five).

While the practice standards remain the same across grade levels, the ways in 
which students engage in the practices progress and develop through experience 
and opportunity. In early grades, mathematical reasoning is primarily based on 
representation. When justifying a claim about even and odd numbers, students will 
typically refer to some representation like countable objects, a story, or a number line 
or other drawing. Representational and visual thinking remains important through 
high school and beyond.

As students become comfortable in additional mathematical contexts and develop 
more shared understanding, they might reason within these purely mathematical 
contexts as they rely on mathematical definitions and prior understanding. However, 
teachers should recognize the importance of concrete ways of making and justifying 
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conjectures to avoid unduly privileging more abstract reasoning. Moving too early 
to abstract reasoning—before all students have an adequate base of representations 
(physical, visual, contextual, or verbal) with which to reason—can lead many students 
to experience mathematical arguments as meaningless, abstract manipulation.

Ample mathematical reasoning and argumentation with concrete representations 
(such as appropriate manipulatives and visual representations), with already-
understood mathematical settings, and with contextual examples help foster a 
classroom learning environment that provides access for all students and builds 
their understanding. (Note that concrete is used here not in the sense of tangible 
and physical, but in the sense of making sense; see Gravemeijer [1997] and Van Den 
Heuvel-Panhuizen [2003].) For example, before attempting in grade two to build 
competence in the use of any particular algorithm to add two-digit numbers, students 
must have some flexible strategies that involve place value and decomposing/
recomposing—supported by physical and/or visual representations such as base-
ten blocks, place-value drawings, or number-line diagrams. Then, students can 
understand that an algorithm (such as the “standard” algorithm) is a useful tool that 
encodes a process that makes sense to them.

The principle of learning an abstract idea by accessing concrete representations 
and examples does not apply only to students in younger grades; it is needed any 
time students encounter new concepts. For example, students in grades five and six, 
working on their understanding of percentage, benefit from a bar representation 
that is used in increasingly abstract ways, finally simplifying to a double number line 
(Van Den Heuvel-Panhuizen 2003). The use of representations and visuals provides 
scaffolding that English learners and others may use to connect the academic 
language to their conceptual understanding.

Consider a sixth-grade class that is using such a bar representation to explore 
percentages. Different students will see different uses of the representation and will 
use it to reason in different ways. Some may quickly generalize calculation patterns 
that they observe (SMP.7) and begin to calculate without reference to the bar 
representation: “If the price after a 25 percent discount is $96, then $96 is three parts 
and I need to figure out the missing fourth part, so I just divide that by three and add 
it to $96 to get the original price of $128.”

This realization can be used productively, both to help these students to connect 
their method to the sense-making bar representation (SMP.8) and to help other 
students understand their classmates’ ideas. One useful routine for this is carefully 
selecting, sequencing, and connecting student work as described in 5 Practices for 
Orchestrating Productive Mathematics Discussions (Smith and Stein 2018). However, 
it is easy—even when attempting to implement the 5 Practices routine—to hold up 
the work of students who have moved beyond the concrete representation as the 
preferred method (because it might appear to be quicker, more generalized, or 
closer to a final understanding teachers hope all students will reach). This can create 
the false notion that reliance on sense-making representations is an indication of 
weakness. Therefore, it is important for teachers to support all students to make sense 
of each other’s approaches by building connections between them.
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Evidence from neuroscience suggests that some of the most effective understandings 
come about when connections are made between visual/physical and numerical or 
symbolic representations of ideas (see figure 4.2). When students relate numbers 
to visual representations and, more broadly, develop multiple ways to think about 
mathematical concepts, they become more effective users of those ideas. See the 
Connecting Representations instructional routine (Kelemanik and Lucenta 2019) for an 
example of a classroom practice to build these connections.

Figure 4.2: Connections Between Representations of Ideas

Source: National Council of Teachers of Mathematics (2014)

At all grades, students should have ample experience in all of the processes above 
(exploring authentic contexts, discovering regularity and structure, abstracting and 
generalizing, and reasoning and communicating). As with the modeling cycle (see 
chapter eight), some of these processes are historically emphasized far more than 
others, contributing to many students’ loss of a belief in mathematics as a sense-
making activity. Classroom activities that are designed to engage students in these 
processes therefore must be sufficiently open ended to allow students room to 
explore, must give access to the regularity and structure that is present, and must 
allow generalization to broader settings.
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Teaching Practices for the Development 
of SMPs
The National Council of Teachers of Mathematics outlines eight “Mathematics 
Teaching Practices”:

1. Establish mathematics goals to focus learning.

2. Implement tasks that promote reasoning and problem solving.

3. Use and connect mathematical representations.

4. Facilitate meaningful mathematical discourse.

5. Pose purposeful questions.

6. Build procedural fluency from conceptual understanding.

7. Support productive struggle in learning mathematics.

8. Elicit and use evidence of student thinking (2014).

Some of these items are especially relevant in developing SMPs, especially SMPs 3, 
7, and 8. First, mathematical goals (Teaching Practice 1) must include SMPs as central 
drivers of activity design that goes beyond the sentiment that rich tasks naturally 
engage students in all eight SMPs. Second, posing purposeful questions (Teaching 
Practice 5) is crucial in establishing students’ inclination to engage in the SMPs as they 
encounter mathematical situations. Reprinted in figure 4.3 is a framework for teacher 
question types (National Council of Teachers of Mathematics 2014). All question types 
are important; type 1 (Gathering information) is traditionally over-represented while 
types 2, 3, and 4 help make clear that students are expected to engage in the SMPs—
these types also help to develop language facilities beyond recall. Chapter two also 
offers guidance in inclusive teaching approaches that foster SMPs. The table has been 
augmented in the “Description” column with a note about the Depth of Knowledge 
(DOK) levels that are most likely to be probed by the given teacher question type 
(Webb 2002).
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Figure 4.3: Framework for Teacher Question Types

Teacher 
Question 

Type

Description Examples

1. Gathering 
information

Students recall facts, definitions, 
or procedures.

DOK Level 1 (Recall)

CA ELD: I.A.1, I.C.9

When you write an equation, what 
does the equal sign tell you?

What is the formula for finding the 
area of a rectangle?

What does the interquartile range 
indicate for a set of data?

2. Probing 
thinking

Students explain, elaborate, or 
clarify their thinking, including 
articulating the steps in solution 
methods or the completion of a 
task.

Usually DOK Level 3 (Strategic 
Thinking); possibly Level 2 (Skill/
Concept)

CA ELD: I.A.1, I.C.9, I.C.11

As you drew that number line, 
what decisions did you make so 
that you could represent 7 fourths 
on it?

Can you show and explain 
more about how you used a 
table to find the answer to the 
Smartphone Plans task?

It is still not clear how you figured 
out that 20 was the scale factor, so 
can you explain it another way?

3. Making the 
mathematics 
visible

Students discuss mathematical 
structures and make connections 
among mathematical ideas and 
relationships.

DOK Level 3 (Strategic Thinking) 
and/or Level 4 (Extended 
Thinking)

CA ELD: I.A.1, I.B.5, I.C.9, I.C.12, 
II.B.3, II.B.4, II.B.5, II.C.6

What does your equation have 
to do with the band concert 
situation?

How does that array relate to 
multiplication and division?

In what ways might the normal 
distribution apply to this situation?

4. Encouraging 
reflection and 
justification

Students reveal deeper 
understanding of their reasoning 
and actions, including making an 
argument for the validity of their 
work.

DOK Level 4 (Extended Thinking)

CA ELD: I.A.3, I.A.4, I.B.5, I.B.7, 
I.B.8, I.C.11, I.C.12, II.B.3, II.B.4, 
II.B.5

How might you prove that 51 is 
the solution?

How do you know that the sum of 
two odd numbers will always be 
even?

Why does plan A in the 
Smartphone Plans task start 
out cheaper but become more 
expensive in the long run?

Source: National Council of Teachers of Mathematics (2014)
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Finally, figure 4.4, which is adapted from Bill Barnes and Mona Toncheff with slight 
modifications, helps to connect the mathematical teaching practices (MTPs) above 
with all of the SMPs (2016).

Figure 4.4: Connecting MTPs with SMPs

Standards for 
Mathematical 

Practice (SMPs)

Teacher Action 
Connections

Mathematics 
Teaching Practices 

(MTPs)
SMP.1 Make sense of 
problems and persevere in 
solving them.

SMP.2 Reason abstractly 
and quantitatively.

SMP.3 Construct viable 
arguments and critique the 
reasoning of others.

SMP.4 Model with 
mathematics.

SMP.5 Use appropriate 
tools strategically.

SMP.6 Attend to precision.

SMP.7 Look for and make 
use of structure.

SMP.8 Look for and 
express regularity in 
repeated reasoning.

Mathematics lessons 
align to the big ideas, 
which teachers clearly 
communicate to students 
(MTP1). Lessons include 
complex tasks (MTP2), 
opportunities for visible 
thinking (MTP8 and 
MTP4), and intentional 
questioning (MTP5) 
to promote deeper 
mathematical thinking 
(MTP6). Teachers design 
lessons from the student’s 
perspective to provide 
multiple opportunities 
to make sense of the 
mathematics (MTP7).

To build SMP.1, teachers 
focus on MTP2 and MTP7.

To build SMP.2, teachers 
focus on MTP2 and MTP3.

To build SMP.3, teachers 
focus on MTP4 and MTP5.

To build SMP.4, teachers 
focus on MTP3 and MTP8.

To build SMP.5, teachers 
focus on MTP2 and MTP3.

To build SMP.6, teachers 
focus on MTP2 and MTP4.

To build SMP.7 and SMP.8, 
teachers focus on tasks 
(MTP2).

MTP1 Establish 
mathematics goals to 
focus learning.

MTP2 Implement tasks that 
promote reasoning and 
problem-solving.

MTP3 Use and 
connect mathematical 
representations.

MTP4 Facilitate meaningful 
mathematical discourse.

MTP5 Pose purposeful 
questions.

MTP6 Build procedural 
fluency from conceptual 
understanding.

MTP7 Support productive 
struggle in learning 
mathematics.

MTP8 Elicit and use 
evidence of student 
thinking.

Source: Adapted from Barnes and Toncheff (2016)
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Kindergarten Through Grade Five 
Progression of SMPs 3, 7, and 8

Imagine a teacher puts the number 36 on the board and asks students to determine 
all the ways they can make 36. In the context of an open problem such as this, young 
learners conjecture, notice patterns, use the structure of place value, notice and 
make use of properties of operations, and make sense of the reasoning of others. 
These practices often occur together as part of classroom discussions that focus on 
argumentation and reasoning through engaging mathematical contexts. The choice 
of number here makes a big difference; a third-grade teacher might choose 36 to 
build multiplication ideas; a kindergarten teacher might use 12 to both formatively 
assess and work to strengthen students’ emerging operation understanding.

Consider, for example, the following first-grade snapshot of a number talk activity. 
Number talks are brief, daily activities that support number sense.

Snapshot: 
Number Talks for Reasoning, Grade One

Big Idea: Tens and ones

CA ELD Standards: I.A.3, I.B.5, I.C.11

Prior to the lesson, the teacher understands that presenting a question or problem 
to the whole class and asking for individual responses may create challenges for 
some students, especially students who are still gaining proficiency in English. In 
the designated ELD lessons prior to this whole-group lesson, the teacher practices 
the discourse needed to explain mathematical thinking and problem-solving so that 
multilingual students have the language they need to participate in the whole-class 
lesson.

The teacher introduces the problem to be discussed by placing the problem 7 + 3 on 
the board, waiting patiently as silent thumbs pop up, communicating that students 
are ready to offer an answer and the strategy they used to figure it out. The teacher 
selects a student, Iggy, to share first.

Teacher: “Iggy, how did you figure out 7 + 3?”

Iggy: “I knew 7 + 2 is 9 and 9 + 1 is 10.”

The teacher records Iggy’s thinking on the board and revoices Iggy’s response, then 
probes Iggy further: “Iggy, where did the 2 and the 1 come from?”

Iggy: “That number.”
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Teacher: “Which number? Who can add on to Iggy’s strategy? How did Iggy know to 
add 2 more and then 1 more? Sam?”

Sam: “2 and 1 are both in 3. Iggy broke down 3.”

Teacher: “You noticed that 2 + 1 is 3. Iggy, is that what you did? Did you think, let me 
break down 3 because I know 7 + 2 is 9 and 9 + 1 is 10?”

Iggy: “Yes.”

Teacher: “I heard Alex sharing a different way with his group. Alex, please share your 
thinking.”

Alex: “Counting on? I did like, I started with 7 and then I counted 8, 9, 10.”

The teacher records Alex’s thinking and revoices his response, then adds: “So that’s a 
different strategy?” (Alex nods.) “Did anyone else count on like Alex?”

The teacher selects other students who share their own strategies and make sense of 
their peers’ reasoning, all based in a relatively straightforward computation problem. 
This approach supports mathematical sense-making and communication. While 
students certainly arrive at the answer (10), the focus of the activity is making sense 
of the addition problem, thinking flexibly and creatively about a range of ways to 
solve it, communicating one’s thinking, and making sense of the reasoning of others. 
This 10-minute activity that explores one addition problem deeply is more effective 
at developing students’ sense-making and strategies for addition than spending 10 
minutes doing a worksheet of routine problems.

SMPs 3, 7, and 8 describe ways of exploring mathematical contexts such as numerical 
patterns, geometry, and place-value structure. Relevant activities might involve 
multiple visual representations, such as fractions represented in area models, 
e.g., partitioned circles, or linear models, e.g., number lines. Allowing students to 
explore the same mathematical ideas and operations using multiple representations 
and strategies is crucial for enabling students to develop flexible ways of thinking 
about numbers and shapes (e.g., Rule of Four [San Francisco Unified School District 
Mathematics Department n.d.]). Students at all grade levels should engage in 
opportunities to create important brain connections through seeing mathematical 
ideas in different ways.

At the elementary level, students work with familiar numbers. This may mean they 
generalize in ways that will be revisited and revised in the later grades as new 
numbers and mathematical principles are introduced. For example, at the early 
elementary level, students may appropriately generalize about the behavior of 
positive whole numbers in ways that are revisited at the later elementary grades with 
the introduction of fractions (later called rational numbers), and then again later at 
advanced grades with the introduction of imaginary or irrational numbers.
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Students may also use everyday contexts and examples to make arguments. 
For example, a student might offer a story about two friends sharing cookies to 
demonstrate that an odd number, when divided by two, has a remainder of one. This 
example further outlines ways that everyday contexts can become generative for 
learning and doing mathematics together.

Authentic: An authentic problem, activity, or context is one in which 
students investigate or struggle with situations or questions about which 
they actually wonder. Some principles for authentic problems include: (1) 

Problems have a real purpose; (2) They have relevance to learners and 
their world; (3) Doing mathematics adds something; and (4) Problems 

foster discussion (Özgün-Koca et al. 2019).

Culturally Responsive-Sustaining Education: Education that recognizes 
and builds on multiple expressions of diversity (e.g., race, social class, 

gender, language, sexual orientation, religion, ability) as assets for 
teaching and learning (New York State Education Department 2019).

Importantly, contexts should be authentic to students—not the hypothetical contexts 
used in many textbooks that require students to suspend their common sense to 
engage with the intended mathematics (see Boaler [2009]). Mathematical contexts 
also need to be culturally relevant to ensure that diverse student experiences are 
considered and to possibly make connections with students’ families. (See chapter 
two for examples of culturally relevant contexts for learning mathematics.) Engaging 
students’ families, cultures, and communities in mathematics learning is an important 
strategy to ensure the cultural relevance of mathematics lessons and to enhance 
students’ mathematical identities.

Discovering Regularity in Repeated Reasoning and 
Structure
Students at the elementary level may notice and use structures such as place value, 
properties of operations, and attributes about shapes to make conjectures and 
solve problems. Additionally, students notice and make use of regularity in repeated 
reasoning. At the elementary level, students may notice, through repeatedly 
multiplying with the number four, that it always results in the same product as 
doubling twice. Students might also notice a pattern in the change of a product when 
the factor is increased by one. For example, since 7 × 8 = 56, then 7 × 9 will be 7 
more than 56. These regularities may lead to claims about general methods or the 
development of shortcuts based on conceptual reasoning.

A variety of reasoning activities support students in thinking flexibly about operations 
with numbers and relationships between numbers. In number talks and dot talks, 
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students share and connect multiple strategies by explaining why the strategies 
work or comparing advantages and disadvantages (UL MLR7). In the vignette, 
“Number Talk with Addition, Grade Two,” students work on doubles posed as 
addition problems. In the vignette, students share strategies to solve 13 + 13. Many 
of the strategies use place-value structure and counting strategies. As students in 
the vignette offer approaches and consider the ideas shared by their peers, some 
students revise their answers.

In a “Collect and Display” activity (UL MLR2; CA ELD I.A.1, I.B.6, I.C.9, II.B.5), teachers 
can scribe student responses (using students’ exact words whenever possible and 
attributing authorship) on a graphic organizer on the board during the whole-class 
discussion comparing two mathematical ideas, such as expressions and equations. 
In a “Compare and Connect” activity (UL MLR7; CA ELD I.A.3, I.B.8, II.B.5, II.C.7), 
students relate the expressions to the diagrams by asking specific questions about 
how two different-looking representations could possibly mean the same thing. For 
example, a teacher might ask, “Where is the 2w in this picture?” or “Which term shows 
this line on the rectangle?”

Abstracting or Generalizing from Observed 
Structure and Regularity
Young learners might explore place-value structure through manipulatives like ten 
frames. Using 10-frame pictures, students offer various strategies used to figure out 
the quantity shown. Implementing a “Compare and Connect” routine (UL MLR7) 
can support students’ language development as they engage in the mathematics. 
Students also attend to and discern patterns and structure as they construct and 
critique arguments. A student might notice that four sets of six gives the same total as 
six sets of four, and that this applies to three sets of seven and seven sets of three, and 
so on, to conjecture about the commutative property during a number talk.

http://www.cde.ca.gov/ci/ma/cf/documents/mathfwappendixc.docx
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Reasoning and Communicating to Share and 
Justify
Part of constructing mathematical arguments includes understanding and using 
previously established mathematical assumptions, definitions, and results. For 
example, an elementary-aged student might conjecture that two different shapes 
have equal area because, as the class has already recognized and agreed upon, the 
shapes are each half of the same rectangle. The student draws on prior knowledge 
that has already been demonstrated mathematically to make their argument.

Constructing and critiquing mathematical arguments includes exploring the truth of 
particular conjectures through cases and counterexamples, and results in successively 
stronger and clearer arguments (UL MLR 1). At the elementary level, a student 
may use, for example, a rhombus as a counterexample to the conjecture that all 
quadrilaterals with four equal sides are squares. Students may use multiplication with 
fractions, decimals, one, or zero to counter the conjecture that multiplying always 
leads to a larger number.
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Grades Six Through Eight Progression of 
SMPs 3, 7, and 8

Students in middle school build on early experiences to deepen their interactions with 
mathematics and with others as they do mathematics together. During the elementary 
grades, students typically draw on concrete manipulatives and representation to 
engage in mathematical reasoning and argumentation. At the middle school level, 
students may rely more on symbolic representations, such as expressions and 
equations, in addition to concrete referents (such as algebra tiles and area models 
for algebraic expressions, physical or drawn examples of geometric objects, and 
computer-generated simulation models of data-generating contexts).

Differing forms of math talk are useful at the middle school level and offer a range 
of opportunities for students to build on their experience in the elementary grades 
to make sense of mathematical ideas with peers. For example, number strings are 
a series of related problems designed to build toward big mathematical ideas (see 
Fosnot and Dolk [2002]). Teachers can create such sequences to highlight the learning 
progression for a given math topic. Consider the grade seven vignette, “Estimating 
Using Structure,” wherein a seventh-grade teacher uses a number string to offer 
students the opportunity to notice their own errors without the teacher’s evaluation, 
make sense of the problems at hand in multiple ways, reflect on their own thinking, 
make connections, and revise their own thinking.

Exploring Authentic Mathematical Contexts
Middle school students become increasingly sophisticated observers of their 
everyday worlds as they develop new interests in understanding themselves and their 
communities. These budding interests can become engaging, authentic contexts for 
mathematizing. An authentic problem, activity, or context is one in which students 
investigate or struggle with real-world situations or questions about which they 
actually wonder. (See chapter one.) Chapter five, “Mathematical Foundations for Data 
Science,” offers examples of middle-school students exploring data about the world 
around them.

Mathematical contexts to explore, in addition to those carrying forward from earlier 
grades (number patterns and two-dimensional geometry), include the structure of 
operations, more sophisticated number patterns, proportional situations and other 
linear functions, and patterns in computation.

Discovering Regularity in Repeated Reasoning and 
Structure
Students at the middle school level may build on their knowledge of place-value 
structure and expand their use of structures, properties of operations, and attributes 

http://www.cde.ca.gov/ci/ma/cf/documents/mathfwappendixc.docx
http://www.cde.ca.gov/ci/ma/cf/documents/mathfwappendixc.docx
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about shapes to make conjectures and solve problems. For example, middle school 
students might draw on tables of equivalent ratios to conjecture about underlying 
multiplicative relationships.

Abstracting and Generalizing from Observed 
Regularity and Structure
Students might notice during a mathematical discussion that interior angle sums 
regularly increase in relation to the number of sides in a polygon and use this 
repeated reasoning to conjecture a rule for the sum of interior angles in any polygon. 
In a “Compare and Connect” activity (UL MLR7; CA ELD I.A.3, I.B.8, II.B.5, II.C.7), 
students compare and contrast two mathematical representations (e.g., place-value 
blocks, number line, numeral, words, fraction blocks) or two solution strategies 
together (e.g., finding the eleventh tile pattern number recursively [“There were 
four more tiles each time, so I just added four to the four starting tiles, ten times.”] 
compared to noticing a relationship between the figure number and the number of 
tiles [“I noticed that each side is always one more than the figure number, so I did 
four times the figure number plus one. And then I had to take away four because I 
counted the corners twice.”]). As a whole class, students might address the following 
questions:

• Why did these two different-looking strategies lead to the same results?

• How do these two different-looking visuals represent the same idea?

• Why did these two similar-looking strategies lead to different results?

• How do these two similar-looking visuals represent different ideas?

A helpful resource is the eighth-grade illustration (with video) of SMP.7 from Inside 
Mathematics, which features the South San Francisco Unified School District (n.d.).

This activity illustrates students noticing mathematical structure in a concrete 
context—namely, water flowing in a closed system from one container into another. 
After observing the relationship between the two quantities (the water level in each 
container), they note constant rates of change and starting value. Students then apply 
the structure they discover to recognize graphs corresponding to different systems—
evidence of abstracting. Teacher actions that support student investigation include 
modeling of academic language, building on and connecting student ideas, restating 
student ideas, and more.

The Education Development Center built student dialogue snapshots to illustrate the 
SMPs (2016). The grade six through seven example, “Consecutive Sums,” illustrates 
students working on the problem, “In how many ways can a number be written as a 
sum of consecutive positive integers?” They work many examples, notice a pattern to 
their calculations, and connect that pattern to some structure of the numbers they are 
working with. They are then able to generalize that structure and develop a general 
strategy for writing integers as sums of consecutive integers.
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Reasoning and Communicating to Share and 
Justify
Part of constructing mathematical arguments includes understanding and using 
previously established mathematical assumptions, definitions, and results. Students 
might conjecture that the diagonals of a parallelogram bisect each other, after having 
experimented with a representative selection of possible parallelograms. Like in the 
elementary grades, where students may conjecture about shapes and area, students 
at the middle school level continue this practice with mathematical content that builds 
on foundational ideas.

Constructing and critiquing mathematical arguments includes exploring the truth 
of particular conjectures through cases and counterexamples. In middle school, 
numerical counterexamples are used to identify common errors in algebraic 
manipulation, such as thinking that 5 – 2x is equivalent to 3x.

For example, a summer math camp for middle-school students emphasizes reasoning 
as a crucially important part of mathematics. Students are told that scientists build 
evidence for theories by making predictions and then performing experiments 
to check their predictions; mathematicians, on the other hand, prove their claims 
by reasoning. Students are also told that it is important to reason well and to be 
convincing—and that there are three levels of being convincing: (1) It is easiest to 
convince yourself of something; (2) it is a little harder to convince a friend; and (3) the 
highest level is to convince a skeptic. Students are asked to be really convincing and 
also to be skeptics.

An exchange between a convincer and a skeptic might include:

Jackie: “I think that the difference between even and odd numbers is that when 
you divide them into two equal groups, even numbers have no leftovers and 
odd numbers always have one leftover.”

Soren: “How do you know it’s always one left over?”

Jackie: “Because, like, if you divide any odd number in half, like—take the 
number five, it would be two groups of two and then one left over. Or the 
number seven, it would be two groups of three and then one left over. There is 
always one left over.”

Soren: “Can you prove it? Maybe it just works for five and seven.”

Jackie: “Well, it’s kind of like, it will always be one left over because if it was two 
left over, they would just go in each of the groups, or if it was three left over, 
two would go in each of the groups. So, there’s always only one left over.”

Evidence from prior implementations of the summer camp indicates that students 
loved being skeptics, and when others were presenting, they learned to ask 
questions of each other such as: “How do you know that works?” “Why did you use 
that method?” and “Can you prove it to us?” (Boaler 2019). In essence, students were 
learning to construct viable arguments and critique the reasoning of others (SMP.3).
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There are many routines that help support students in being the skeptic, including 
tools to support English learners and others to develop the necessary language. In a 
“Critique, Correct, Clarify” activity (UL MLR3; CA ELD I.B.6, I.B.7, I.C.11, II.A.1, II.B.5), 
students are provided with teacher-made or curated ambiguous or incomplete 
mathematical arguments (e.g., “1/2 is the same as 3/6 because you do the same to 
the top and bottom,” or, “2 hundreds is more than 25 tens because hundreds are 
bigger than tens.”). Students practice respectfully making sense of, critiquing, 
and suggesting revisions together. In a “Three Reads” activity (UL MLR6; CA ELD 
I.B.6, I.C.12, II.A.1, II.B.3, II.B.4), students make sense of word problems and other 
mathematical texts by reading a mathematical context or problem three times, 
focusing on: (1) the context of the situation, (2) relevant quantities (things that can be 
counted or measured) and the relationships between them, and (3) what mathematical 
questions they might ask about the context and its quantities, along with possible 
solution methods.
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Grades Nine Through Twelve 
Progression of SMPs 3, 7, and 8

In high school, students build on their earlier experiences in developing their 
inclination and ability to explore, discover, generalize and abstract, and argue. It is 
important that high school teachers understand when designing student activities 
that the SMPs are as important as the content standards and must be developed 
together. The Intersegmental Committee of the Academic Senates of the California 
Community Colleges, the California State University, and the University of California 
(ICAS) makes this clear in Statement on Competencies in Mathematics Expected of 
Entering College Students, with expectations for students such as:

“A view that mathematics makes sense—students should perceive mathematics 
as a way of understanding, not as a sequence of algorithms to be memorized 
and applied.” (3)

“…students should be able to find patterns, make conjectures, and test those 
conjectures; they should recognize that abstraction and generalization are 
important sources of the power of mathematics; they should understand that 
mathematical structures are useful as representations of phenomena in the 
physical world; they should consistently verify that their solutions to problems 
are reasonable.” (3)

“Taken together the Standards of Mathematical Practice should be viewed as 
an integrated whole where each component should be visible in every unit of 
instruction.” (7) (ICAS 2013)

See the vignette, “Number String on an Open Number Line, High School,” wherein 
a teacher uses this activity early in the school year to simultaneously develop the 
content standards and SMPs. The activity reinforces structural thinking about the real 
number system and also begins to establish a class culture of shared exploration, 
conjecture, noticing, justifying, and communicating.

Exploring Authentic Mathematical Contexts
An authentic problem, activity, or context is one in which students investigate or 
struggle with situations or questions about which they actually wonder. (See chapter 
one.) By high school, students have a wide array of authentic contexts available for 
exploration. They continue to explore nonmathematical contexts in the real world, 
such as puzzles. Chapter five addresses one set of tools for exploring such contexts, 
and mathematical modeling represents another (overlapping) set. Often, data and 
modeling approaches yield mathematical contexts that then can be explored in the 
manner discussed here.

SMPs 7 and 8 afford opportunities to explore mathematical contexts and situations. 
Numerical patterns, geometry, and place-value-based structure in the early grades, 

http://www.cde.ca.gov/ci/ma/cf/documents/mathfwappendixc.docx
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supplemented by structure and properties of operations in upper elementary and 
middle school, expand in high school to focus on algebraic, statistical, and geometric 
structure and repeated reasoning.

Important objects in algebraic settings include variables (letters or other symbols 
representing arbitrary elements of some specified set of numbers; distinct from 
unknowns and constants), graphs (often but not always graphs of functions), 
equations, expressions, and functions (often given by algebraic expressions—
formulas—or implied by tables or graphs).

One very important skill in working with functions is to move fluently between 
contextual, graphical, symbolic, and numerical (e.g., table of values) representations 
of a function. Thus, activities that induce a need to switch representations are crucial 
(UL DP4). The exercise of moving from a formula (symbolic representation) to a graph 
is vastly overrepresented in most students’ experience, often via sample values 
(numerical representation) and connecting dots. Examples of other pairings are 
described here.

An engaging and important way to introduce patterns, expressions, and functions 
is through the context of visual or physical patterns (an easy-to-understand context). 
Students can first be asked to describe the growth of such a pattern with words 
(CA ELD I.C.9) and then move to symbolic representations. In this way, students can 
learn that algebra is a useful tool for describing the patterns in the world and for 
communication. Figures 4.5, 4.6, and 4.7 present patterns for this type of work.

Figure 4.5: Shapes Task—How Do You See the Shapes Growing?

Source: Ruth Parker, as cited by Mathematics Education Collaborative (2023)

Long description of figure 4.5

https://www.cde.ca.gov/ci/ma/cf/ch4longdescriptions.asp
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Figure 4.6: Multiple Methods for Describing Growth Patterns

Long description of figure 4.6

Figure 4.7: Build This Graph: g(x) = -3x2, h(x) = sin(9x), and f(x) = -3x2 + sin(9x)

https://www.cde.ca.gov/ci/ma/cf/ch4longdescriptions.asp
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“Guess My Rule” games (with student-generated sequences) require students to 
attempt to move from numerical representations to formulas. Students often can 
find a recursive formula first. “Find the 100th Term”-type questions force students to 
attempt to move to a formula in terms of the sequence number. It is important that 
students have some experience with “Guess My Rule” games in which the rule does 
not match the most obvious formula, as any finite set of initial values cannot determine 
an infinite sequence. As an example, the sequence 1, 2, 4, 8 is generated nicely by the 
function f(n) = (n-1)(n-2)(n-3)(n-4) + 2n-1; the next term is 40, not 16! However, in many 
instances (including most applications), the “simplest” rule that fits the given data is a 
good one to explore first.

In the other direction, “Build This Graph” activities require student teams to try to 
build given graphs (perhaps visually modeling real-world data) from graphs of well-
understood “simple” functions—perhaps monomials such as axb, perhaps also sin(x) 
and cos(x) or whatever set of “parent” functions is already understood. Figure 4.7 
contains the graphs of g(x) = -3x2 and h(x) = sin(9x), together with their sum  
f(x) = -3x2 + sin(9x). This type of decomposition of a (graph of a) function is very 
important in many applied settings, in which, for example, different causal factors 
might act on very different time scales.

Discovering Regularity in Repeated Reasoning and 
Structure
To explore a context with an eye for algebraic structure is to consider the 
parts that make up or might make up an algebraic object such as a function, 
visual representation, graph, expression, or equation, and to try to build some 
understanding of the object as a whole from knowledge about its parts. Noticing 
regularity in repeated reasoning in an algebraic context often leads to discoveries 
that similar reasoning is required for different parameter values (e.g., comparing the 
processes of transforming the graph of x2 into the graphs for the functions  
3x2 + 2, 1/2x2 - 4, and -2x2 + 1, leading to general statements about graphing functions 
of the form ax2 + b).

In a geometric context, structural exploration (SMP.7) examines the relationships 
between objects and their parts: polyhedra and their faces, edges, and vertices; 
circles and their radii, perimeters, and areas; and areas in the plane and their 
bounding curves. Repeated reasoning occurs when exploring the sum of interior 
angles for polygons with different numbers of sides, discovering Euler’s formula  
V – E + F = 2 (see figure 4.8), exploring possible tilings of the plane with regular 
polygons, and more.
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Figure 4.8: Euler’s Polyhedron Formula

Source: Wikimedia Commons (2014)

Long description for figure 4.8

For instance, a “Guess My Rule” game for the sequence –6, –13, –26, –45, ..., followed 
by “predict the 100th number in the sequence” can lead to a rich exploration of 
quadratics and the meaning and impact of the quadratic, linear, and constant 
terms—and eventually to the quadratic function f(x) = -3x2 + 2x - 5. (See figure 4.9 for 
an example of using “Guess My Rule” to understand quadratic functions.) Carefully 
designed prompts and/or a series of “Guess My Rule” constraints can help student 
teams discover the relationship between the coefficient x2 and the constant second 
difference of a sequence (here, the constant second difference of the sequence is –6, 
so the coefficient of x2 is –3). Further exploration, perhaps graphical, can uncover the 
idea of finding a linear function to add to -3x2 so that the sum generates the original 
sequence for whole-number inputs.

https://www.cde.ca.gov/ci/ma/cf/ch4longdescriptions.asp
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Figure 4.9: Using the “Guess My Rule” Game to Understand Quadratic Functions

Exploring the general behavior of f(x) could be motivated by comparing sequences, 
using questions like, “Which sequence will have a higher value in the long run? How 
do you know?”

To try to predict the general behavior (that is, the shape of the graph) of f(x), student 
teams should:

• consider the known shape of the graph of g(x) = x2,

• explore what happens to the graph if they multiply every output value by 3 and 
then take the opposite of every output,

• then perhaps sketch the two functions h(x) = -3x2 and m(x) = 2x on a plane 
and add the output values for many sample values for x, to get a sense for the 
shape of n(x) = -3x2 + 2x.
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Sharing strategies and being accountable for understanding and using other 
teams’ strategies ensures that students have ample opportunities to connect across 
approaches and are prepared to notice patterns and repeated reasoning when 
tackling similar problems.

It is important to note that producing by hand a reasonably accurate graph of a 
function given by a formula is not a goal in its own right. Instead, it can be a means 
toward the end of deeply and flexibly understanding the meaning of a graph and the 
relationship between a function, its graph, the points on the graph, and the context 
that generated the function.

Every student should also have easy access and frequent opportunities to use 
computer algebra systems to graph functions, thus focusing mental energy on 
interpretation and connection.

Playing the “Guess My Rule” game several times (perhaps with a constraint of constant 
second differences) encourages students to notice the similarity in what they must do 
each time. The point is not to become fast at sketching the graph of a quadratic but to 
first notice, and then understand, the ways in which the different parts of the formula 
can be considered separately to help understand the whole. In other words, noticing 
repeated reasoning leads to the revealing of structure.

The “Build This Graph” example in the previous section may seem at first glance to 
be more difficult than understanding the structure of f(x), since the parts are not 
necessarily as apparent as they are in the formula for f(x). However, consider figure 
4.10 that follows—if asked to describe the behavior of this function, students will offer 
ideas like “as x gets bigger, the function values generally get bigger; it wiggles up and 
down and generally goes up.” A student team offering such a description has noted 
the two “parts” of this function’s behavior, and thus discovered some of its structure. 
They are well on their way to using graphing software in identifying k(x) = 3x + sin(9x) 
as a likely formula for this function.

Figure 4.10: Build This Graph: k(x) = 3x + sin(9x)
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Abstracting and Generalizing from Observed 
Regularity and Structure
Observing repetition in reasoning naturally leads to questions such as, “Do we have 
to keep doing the same thing with different numbers?” and, “What is the largest set of 
examples that we could apply this reasoning to?” Exploring either question involves 
examining structure. Students abstract an argument when they phrase it in terms of 
properties that might be shared by a number of objects or situations—thus paying 
attention to the structure of the objects or situations. They generalize when they 
extend an observation or known property to a larger class.

Several rounds of explorations such as the “Guess My Rule” example above could lead 
to any of the following abstractions and generalizations:

• The quadratic term in a quadratic function always dominates over time; that is, 
graphs of functions of the form g(x) = ax2 + bx + c, where a, b, and c are real 
numbers with a ≠ 0, always have the shape of a parabola, and the parabola 
opens up or down depending on the sign of a.

• If g is as above and you compare g(x), g(x + 1), and g(x + 2), then the difference 
g(x + 2) - g(x + 1) is  2a more than the difference g(x + 1) - g(x) (generalizing to 
noninteger “second differences”).

• To determine a quadratic function, you need to know at least four points on 
the graph because with just three you cannot decide whether the second 
differences are constant (note that this conjecture is not true, which means it 
raises a good opportunity for exploring possible justifications or critiques).

• When adding two functions, the steepness (slope) of the new function at each 
input value is also the sum of the two slopes (at that input) of the functions 
being added.

• When comparing two quadratics, the one with the faster-growing quadratic 
term (the larger a) always will be larger for large enough values of x, no matter 
what the linear and constant terms are.

• When comparing two polynomials of the same degree, the one with the 
faster-growing quadratic term always wins in the long run (generalizing to 
polynomials from the smaller class of quadratics).

The “Build This Function” tasks above might lead to abstractions that are more 
along the lines of heuristics for understanding the structure of functions presented 
graphically:

• When trying to break down a graph, look at the largest-scale pattern you can 
see. If the graph generally goes in a straight line, like the k(x) = 3x + sin(9x) 
example, try to find that straight line and subtract it out.
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• When trying to break down a graph, look at the most important pattern—the 
one that causes the biggest ups and/or downs (like the parabolic shape of 
the f(x) = -3x2 + 2x - 5 example). Try to figure out the shape of that pattern and 
subtract it out.

• If there is a periodic up-and-down in the graph, there is probably a sin(ax) or 
cos(ax) in the formula.

Reasoning and Communicating to Share and 
Justify
In many respects, mathematical knowledge and content understanding are 
developed and demonstrated socially; it is of little value to find a correct “solution” 
to a problem without having the ability to communicate to others the validity and 
meaning of that solution. Thinking also can be clarified through exchange with 
others. SMP.3 includes these aspects of the development of arguments: “They justify 
their conclusions, communicate them to others, and respond to the arguments of 
others.” To create an environment that makes mathematical practices such as SMP.3 
accessible to all students, teachers should develop routines with students that 
support their ability to communicate their thoughts and ideas, as well as work socially 
in a classroom of mixed language and math knowledge. Chapter two offers examples 
of such routines, including reflective discussions, peer revoicing routines, as well 
as teacher behaviors that support the creation of a mixed-language mathematics 
community. It is therefore of utmost importance that teachers create environments 
and routines that provide access for all students to communicate their thoughts and 
ideas with each other and with the teacher. The Math Language Routines, developed 
by Understanding Language at the Stanford Center for Assessment, Learning, and 
Equity, provide teachers with a set of robust routines to foster student participation 
while simultaneously building math language, practices, and content.

An important (implicit) aspect of SMP.3 is a recognition that the authority in 
mathematics lies within mathematical reasoning itself. Students come to own their 
understanding through constructing and critiquing arguments, and through this 
process they increase their confidence and their sense of agency in mathematics. 
Classroom routines in which students must justify—or at least give evidence for—
their abstractions or generalizations, and in which other students are responsible 
for questioning justifications and evidence, help to build the “Am I convinced?” and 
“Could I convince a reasonable skeptic?” meta-thinking that is at the heart of SMP.3. 
An example would be a mathematical implementation of the classroom routine 
“Claim, Evidence, and Reasoning (CER),” which is popular in science and writing 
instruction (McNeill and Martin 2011). Here, the different elements of an argument 
when investigating a problem are

• stating a claim,

• giving evidence for that claim, and

• producing mathematical reasoning to support the claim.
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It is important to note that the mathematical reasoning here is of a different sort 
than scientific reasoning when CER is used in science. In science, the reasoning is for 
the purpose of connecting the evidence to the claim, explaining why the evidence 
supports the claim. On the other hand, the mathematical reasoning in the CER routine 
is expected to explain why (making use of structure) something is true in general (thus 
also explaining why the examples used as evidence are valid).

It is useful to name “giving evidence” and “producing reasoning” as separate 
processes to distinguish between the noticing of pattern and structure (evidence) and 
the reasoning to support a general claim. For instance, in exploring a growth pattern, 
students might notice that the sum of three consecutive integers always seems to 
be divisible by three. A student might then formulate this as a claim: “I think that 
whenever you add three numbers in a row, the answer is always a multiple of three.” 
When it is clear the student means three consecutive integers, other students might 
check additional examples and contribute additional evidence. But the reasoning step 
requires something more: a numerical fluency argument (“If you take away one from 
the third number and add it to the first number, then you just have three times the 
middle number”), an algebraic argument (such as “if a is an integer, then  
a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1)”), or some other general argument.

Carefully chosen number talks—well known in the elementary math classroom—can 
be implemented in high school as a way of enabling students to compare ideas 
and approaches with others in a low-stakes environment. They help to build SMP.1 
and SMP.3. Well-chosen routines or tasks, such as number strings, can help build 
SMP.7 and SMP.8 by building from specific examples to thinking in terms of structure 
(abstraction) or larger classes (generalization).

For example, open number lines (blank, with no numbers marked), used with 
multiplication or division, can provide problems for number talks or strings that lead 
often to overgeneralization—a great thing to happen, as it creates skepticism and 
forces a reevaluation of evidence and a search for convincing justification. (See the 
vignette, “Number String on an Open Number Line, High School”).

Additional types of activities can create in students the need to reason and 
communicate to support their explanations and justifications. These include 
producing reports, videos, or materials to model for others (for example, to parents 
or to a younger class); prediction and estimation activities; and creating contexts. The 
last—creating real-life or puzzle-based contexts generating given mathematics such as 
a given function type—helps students cultivate meta-thinking about structure (What 
are the parts of a quadratic function and how might I recreate them in a puzzle or find 
them in a real-life setting?). Creating contexts also helps students develop a way of 
seeing the world through the lens of mathematics.

The CA CCSSM identify two particular proof methods in SMP.3.1 (a high school-
only addition to SMP.3): Proof by contradiction and proof by induction. The logic of 
proof by contradiction is straightforward to students: “No, that can’t be, because 
if it were true, then ….” The standard high school examples are proofs that √2 is 
irrational (generalizing to the irrationality of √2) and that there are infinitely many 
prime integers. These are both clear examples. Although the second of these two 

http://www.cde.ca.gov/ci/ma/cf/documents/mathfwappendixc.docx
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does not actually require a proof by contradiction, the following proof is most easily 
understood when worked out through the contradiction framework: “What would 
happen if there were only finitely many primes?”

The difficulty is to embed such proofs in a context that prompts a wondering, a need 
to know, on the part of students, and then to uncover the steps of the argument in 
such a way so as not to seem pulled out of thin air. Some approaches attempt to 
motivate with historical contexts, others with patterns. For example, suppose the class 
already has established that every natural number greater than 1 is either prime or is 
a product of two or more prime factors. “Maybe 2, 3, 5, 7, 11, and 13 are all the primes 
we need to make all integers! No? Well, maybe if we add 17 to the set we have them 
all?” When students get tired of the repeated reasoning of finding an integer that is 
not a product of the given primes, either students or the teacher can ask whether 
there might always be a way of finding an integer that is not a product of integers 
in the given finite set. This provides an opening for a proof by contradiction: “Let’s 
pretend (assume) that there are only finitely many primes—let’s say n of them. Why 
don’t we call them p1, p2, p3, …, pn. Can you write down an expression for a natural 
number that is not divisible by any of these primes?” To eventually arrive at a proof 
requires constructing an integer that can’t possibly be divisible by any of p1, p2, …, 
pn—Euclid’s choice (call it “s”) was the product of all of them, plus 1: s = p1 ⋅ p2 ⋅ … ⋅ pn 
+ 1. Once an argument is found that s is not divisible by any of p1, p2, p3, …, pn, then 
since s must be divisible by a prime not in the list p1, p2, p3, …, pn, we have found a 
contradiction to our initial assumption that p1, p2, p3, …, pn contains all primes. Thus, 
the list of primes cannot be finite.

The logic of proof by induction is also straightforward when described informally: 
The first case is true, and whenever one case is true, the next one is true as well. 
Thus, the chain goes on forever. Such chains of statements, and student wondering 
about whether they go on forever, might be easier to elicit from patterns than proof 
by contradiction. For instance, students might notice, in the context of exploring 
quadratic functions, that whenever they substitute an odd integer in for x in the 
function f(x) = x2 - 1, they obtain an output that is a multiple of 8. This naturally leads to 
the questions, “Is this really true for all odd integers x?” and, “Could I use the fact that 
it’s true for x = 5 to show that it’s true for x = 7?” The formalism of representing “the 
next odd number” after x as x + 2 follows relatively naturally, and “using one case to 
prove the next” can proceed. This example should be accompanied by the question, 
“Why doesn’t the argument work for even integers?”
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As described here, “proof” in high school does not originate with purely mathematical 
claims put forth by curriculum or by the teacher (“Prove that alternate interior angles 
are congruent”), nor with formal axioms and rules of logic. Rather, proof originates, 
like all mathematics, with a need to understand—in the case of proof, a need to 
understand why an observed phenomenon is true and that it is true for a defined 
range of cases. It is not enough that the curriculum writer or the teacher understands 
and wishes for students to understand. The need to understand—and to understand 
why—must be authentic to students for learning to be deep and lasting. Thus, it is 
important that students’ experiences with constructing and critiquing arguments 
(SMP.3)—including their experiences with formal proof—be embedded as much as 
possible within a process beginning with wonder about a context and ending with a 
social and intellectual need to understand and justify:

• Exploring authentic mathematical contexts

• Discovering regularity in repeated reasoning and structure

• Abstracting and generalizing from observed regularity and structure

• Reasoning and communicating with and about mathematics in order to share 
and justify conclusions
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Conclusion

This chapter discusses key ideas that bring the SMPs to life. It focuses on three 
interrelated practices: (1) Constructing viable arguments and critiquing the 
reasoning of others, (2) Looking for and making use of structure, and (3) Looking 
for and expressing regularity in repeated reasoning. Considered together, these 
three practices are the foundation for classroom experiences that center exploring, 
discovering, and reasoning with and about mathematics. While this chapter illustrates 
the integration of three of the SMPs, all SMPs must be taught in an integrated way 
throughout the year. This vision for teaching and learning mathematics has emerged 
from a national push over the last several decades in mathematics education to 
pay more attention to supporting K–12 students in becoming powerful users of 
mathematics to help make sense of their world.

California Department of Education, October 2023
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